
Oil and Water? High Performance Garbage Collection in Java with MMTk

Stephen M Blackburn

Department of Computer Science
Australian National University

Canberra, ACT, 0200, Australia
Steve.Blackburn@cs.anu.edu.au

Perry Cheng
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY, 10598, USA

perryche@us.ibm.com

Kathryn S McKinley∗

Department of Computer Sciences
University of Texas at Austin

Austin, TX, 78712, USA
mckinley@cs.utexas.edu

Abstract

Increasingly popular languages such as Java and C# re-
quire efficient garbage collection. This paper presents the
design, implementation, and evaluation of MMTk, a Mem-
ory Management Toolkit for and in Java. MMTk is an effi-
cient, composable, extensible, and portable framework for
building garbage collectors. MMTk uses design patterns
and compiler cooperation to combine modularity and effi-
ciency. The resulting system is more robust, easier to main-
tain, and has fewer defects than monolithic collectors. Ex-
perimental comparisons with monolithic Java and C imple-
mentations reveal MMTk has significant performance ad-
vantages as well. Performance critical system software typ-
ically uses monolithic C at the expense of flexibility. Our re-
sults refute common wisdom that only this approach attains
efficiency, and suggest that performance critical software
can embrace modular design and high-level languages.

1 Introduction

The tension between flexibility and performance pervades
systems development. Flexibility assists in rapidly realizing
new ideas, and good base performance gives the realizations
credibility. This paper is a case study in a systems research
context that shows flexibility can actually improve rather
than degrade performance.

Programmers are increasingly choosing object-oriented
languages with automatic memory management (garbage
collection) because of their software engineering benefits.
Although researchers have studied garbage collection for a
long time [2, 19, 20, 25, 27, 34], this reliance on it and grow-
ing locality effects have made garbage collection research a
high priority in academia [13, 17, 26, 30, 32] and indus-
try [8, 9, 10]. Many collector implementations are mono-
lithic and do not share reused components [1, 21]. Per-
formance comparisons across a range of approaches is thus
problematic and rare [4, 7, 21].

∗This work is supported by NSF ITR CCR-0085792, NSF CCR-
0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, and IBM. Any
opinions, findings and conclusions or recommendations expressed in this
material are the authors and do not necessarily reflect those of the sponsors.

This paper presents the design, implementation, and
evaluation of MMTk, a Memory Management Toolkit in
Java for Java.1 MMTk supports a wide range of collectors:
copying, mark-sweep, reference counting, copying gener-
ational, hybrid generational, and new ones [13, 15, 30].
We show how MMTk combines good software engineering
design with excellent performance by comparing MMTk’s
code and execution times in Jikes RVM [1], a Java-in-Java
Virtual Machine, with monolithic Java and C collector im-
plementations. MMTk is both more succinct and higher
performing. Another benefit of good software engineering
is a substantially more robust system—within six months
MMTk had become more stable and exhibited a lower de-
fect rate than its four year old monolithic counterparts.

MMTk addresses the tension between flexibility and per-
formance with a combination of design features: 1) Java
as a systems language, 2) well chosen design patterns, 3)
a clean interface between the virtual machine and MMTk,
and 4) the composition of policies and mechanisms to de-
fine collectors. For correctness, we extend the Java type
system to implement memory addresses and operations on
them. We use design patterns to efficiently implement suc-
cinct composition of policies and correctness in the face of
concurrency. MMTk includes a narrow, portable interface
between the runtime and memory manager, which abstracts
VM-specific object and program representations.

Comparing MMTk to the original, highly tuned mono-
lithic collectors in Jikes RVM [1] reveals a trade-off be-
tween flexibility and performance. Source code metrics
show that MMTk has a substantially simpler and more mod-
ular design than the originals, but implements a wider range
and number of collectors. On SPEC benchmarks, MMTk
improves total performance 5 % to 20% on average over the
monolithic collectors due to dynamic heap partitioning. On
micro-benchmarks, MMTk performs between 5% and 25%
worse on allocation and tracing speed. Together these re-
sults demonstrate that total perfomance is better optimized
with modular components, even though in theory each com-

1MMTk is publicly available as part of Jikes RVM at:
http://www.ibm.com/developerworks/oss/jikesrvm/.



ponent could be faster in a monolithic system.
On a C implementation of the micro-benchmark, the

GNU C allocator improves over MMTk on Java by 6% in
the fairest comparison, but when Jikes RVM applies aggres-
sive compiler inlining which the reduced impedance in a
Java-in-Java implementation enables, MMTk outperforms
the C allocator by 60%. These results suggest slightly aug-
mented Java as a competitive systems language.

The background section next outlines the key mecha-
nisms and policies for readers unfamiliar with garbage col-
lection. Section 3 compares MMTk with other explicit and
automatic memory management toolkits [13, 21, 23], none
of which combine the diversity of implementation with per-
formance of MMTk. Section 4 then discusses MMTk’s de-
sign, followed by results, conclusions, and future work. The
key contribution of this work is to describe a clean flexible
design and implementation of a performance critical com-
ponent, the memory manager for Java, that practices good
software engineering. A surprising result is that this design
approach also attains performance benefits.

2 Background
This section describes memory management terms and al-
gorithms, and how MMTk organizes the heap to implement
them. For a thorough treatment, see Jones and Lins [25].
Following the literature, the execution time consists of the
mutator (the program itself) and periodic garbage collec-
tion. Some memory management activities, such as object
allocation, are mixed in with the mutator. Collection can
run concurrently with mutation, but for simplicity our dis-
cussion assumes a separate collection phase.

MMTk groups regions of memory into spaces and imple-
ments garbage collection algorithms with a policy that cou-
ples a space with an allocation and collection mechanism.
Whole heap collectors use one policy for most objects. Gen-
erational collectors divide the heap into age cohorts, and
use one or more policies [2, 34]. For generational and other
incremental algorithms, a write barrier remembers pointers
into independently collected spaces. For every pointer store,
the compiler inserts write-barrier code. At execution time,
the write-barrier conditionally records pointers between in-
dependently collected spaces. MMTk implements the fol-
lowing standard allocation and collection mechanisms.

A Bump Pointer Allocator appends new objects to the
end of a contiguous space by incrementing a bump
pointer by the size of the new object.

A Free-List Allocator organizes memory into a size-
segregated free-list that divides memory into blocks of
size k. New objects are allocated into a free cell of a
block whose size can just accommodate that object.

A Tracing Collector identifies live objects by computing a
transitive closure from the roots which include stacks,
registers, and remembered pointers. It reclaims space

by copying live data out of the space, or by freeing
untraced objects.

A Reference Counting Collector counts the number of
incoming references for each object, and reclaims ob-
jects with no references.

MMTk forms policies with these mechanisms.

Copy space: bump-pointer allocation and tracing collec-
tion that copies live objects out of the space.

MarkSweep space: free-list allocation and tracing collec-
tion that returns dead objects to the free-list.

RefCount space: free-list allocation and reference count-
ing collection that returns dead objects to the free-list.

Immortal space: bump-pointer allocation and no collec-
tion.

Large object space: coarse-grained free-list of pages and
treadmill collection [25].

These policies combine to form the following collectors.

SemiSpace: SemiSpace uses two copy spaces. It allocates
into one. When full, it copies live objects into the
other, and then swaps them.

MarkSweep: MarkSweep uses one mark-sweep space. It
traces and marks the live objects, and lazily finds free
slots during allocation.

RefCount: The deferred reference-counting collector uses
a free-list allocator. During mutation, it buffers counts.
The collector periodically processes the counts, intro-
duces temporary increments for deferred objects (e.g.,
roots), and then deletes objects with a zero count.

GenCopy: The classic copying generational collector [2]
allocates into a young (nursery) Copy space, and pro-
motes survivors into an old SemiSpace. The write bar-
rier records pointers from old to nursery objects. It col-
lects when the nursery is full, and reduces the nursery
size by the size of the survivors. When the old space is
full, it collects the entire heap.

GenMS: This hybrid generational collector is like Gen-
Copy except it uses a MarkSweep old space.

GenRC: This hybrid generational collector uses Ulterior
Reference Counting [15] to combine a copying nursery
with a RefCount mature space.

3 Related Work
This section compares MMTk with previous garbage col-
lection toolkits [13, 23, 21] and explicit memory manage-
ment [5, 6, 11, 35] toolkits. The UMass Language Inde-
pendent GC Toolkit was the first garbage collection toolkit
to tease apart the language and collector interface in or-
der to build portable garbage collectors [23]. Systems for
Smalltalk, Modula-3, Cecil, and Java [18] use the UMass
GC Toolkit. It provides generational copying collectors,

2



and manages memory in fixed-size blocks. It manages each
large object directly, using a list associated with each gen-
eration. It does not include free lists, so does not support
mark-sweep or reference counting collectors. Its design
is not general enough to include recent copying collectors
such as Older-First [32] or Beltway [13].

GCTk, a more general Garbage Collection Toolkit for
Java addressed some of these shortcomings [13, 31]. To
our knowledge, GCTk is the only other garbage collec-
tion toolkit implemented in Java. This framework provides
a single shared implementation of key functions such as
scanning and remembered sets which record write-barrier
entries. GCTk implements copying age-based collectors
by separating the collection increment from the heap po-
sition [13, 31], but it does not include free-list allocation,
nor can it mix and match policies, and it was never in-
tended to be portable. MMTk overcomes these limitations
of GCTk. MMTk uses a composable design to mix and
match policies and mechanisms. It has free-list memory
managers, a large object space, and the composition of dis-
parate policies, none of which GCTk supports. It also cre-
ates a portable language/compiler interface that researchers
are porting to Rotor (a C# runtime), Open VM (another Java
runtime), and a Haskell runtime.

The Marmot system [21] is an ahead-of-time compiler
and runtime system for Java written in C. It provides semi-
space and copying generational collectors. It produces very
efficient allocation and write-barrier sequences using com-
piler cooperative inlining. MMTk generalizes this pattern
and applies it more broadly. MMTk includes a much wider
range of collectors and policies than Marmot, is modular
and extensible, and works in both just-in-time and ahead-
of-time settings.

A few researchers have also built memory management
toolkits for explicit memory management of C/C++ pro-
grams [5, 6, 11, 35]. Heap layers is the most general and
high performance of these frameworks [11]. It provides
multiple and composable heaps. It achieves the perfor-
mance of existing custom and general-purpose allocators
in a flexible, reusable framework. It attains this combi-
nation through the use of mixins [16]. Our framework
could also probably benefit from mixins that statically ex-
press multiple possible class hierarchies, but we have not
investigated it here. Explicit memory managers for C/C++
have a narrow interface that interacts with the program only
through the malloc and free. MMTk has a more complex
interface since it interacts with a managed runtime system
on many mechanisms including scheduling, write barriers,
object models, and root identification. C and C++ limit
the memory management policies to free-lists, since ob-
jects cannot move. The Customizable Memory Manage-
ment (CMM) framework focuses on automatically collect-
ing these heaps, but uses virtual method calls, thus sacrific-

ing performance [5, 6]. These frameworks thus are not and
need not be as general as MMTk.

Yeates et al. [37] analyzed four tracing collectors and
identified six design patterns, of which two were new
domain-specific patterns. Their work did not include ref-
erence counting nor collector toolkits where multiple in-
stances of the same pattern might occur.

4 Design

MMTk’s highest level design goals are flexibility and per-
formance. Flexibility assists in rapidly realizing new re-
search ideas, and good performance gives the realizations
credibility. Common wisdom holds that these goals are in-
compatible. As a result, prior memory management sys-
tems focus on high performance using monolithic and in-
flexible C and assembly implementations that curtail cre-
ative research. Our entire design process and the sub-
sequent evolution of MMTk has focused on these goals.
We use thin abstractions, target our optimizations carefully
(and avoid making them prematurely!), and hold the pre-
existing, highly tuned monolithic implementations as our
benchmark for performance.

This remainder of this section discusses how the design
of MMTk reaches both goals using Java as a systems imple-
mentation language. It begins with three issues for Java-in-
Java implementations: extensions to the Java type system,
compiler pragmas, and the problem of the collector execut-
ing within the heap that it is collecting. We also describe
design patterns that attain correctness and performance, and
then present the portable interface between MMTk and the
virtual machine. Section 4.4 outlines MMTk’s reusable
memory management mechanisms and policies, and how
to compose them to yield new systems. Finally we mea-
sure the reuse of components and compare MMTk collec-
tors to the original monolithic implementations. These re-
sults demonstrate the benefits of modularity and aggressive
software reuse.

4.1 Java as a Systems Language

MMTk grew out of Jikes RVM and thus, like Jikes RVM,
is implemented in Java. Implementing a language runtime
in itself presents some well known problems [1, 24]. We
address these key issues: 1) extensions for manipulating
memory directly, 2) exploiting VM compiler pragmas, and
3) safely implementing a collector that executes within the
heap it collects (or, ‘eating your own dog food’).

New Types for Unsafe Operations

MMTk uses a modest extension of Java defined by and de-
veloped for Jikes RVM [1]. In order to access and mod-
ify memory, we require unsafe operations. MMTk re-
quires that the VM defines three special types: VM_Address,
VM_Offset, and VM_Word. VM_Address corresponds to a
hardware-specific notion of memory address. VM_Offset

3



expresses the distance between two addresses, and VM_Word

corresponds to the value returned by dereferencing an ad-
dress. These unboxed types (operations on them never re-
sult in allocation) provide methods for pointer arithmetic,
pointer comparison, casts, and memory reads and writes in-
cluding atomic operations. The memory manager imple-
ments its lowest-level operations, such as allocation, with
them. A source code transformation ports these idioms
to the gcc Java front end (gcj), and other targets such as
OVM [29] and Rotor [33].

Compiler Pragmas

We use Jikes RVM’s pragmas for controlling inlining and
interruptibility. In Jikes RVM, pragmas are scoped across
classes and methods using the implements and throws id-
ioms with suitably named interfaces and exceptions. For ex-
ample, the method qualifier ‘throws PragmaInline’ directs
the compiler to inline a method. Inlining is only scoped
with respect to individual methods. More specific pragma
scopes (such as method) override broader scopes (such as
class), allowing interruptible methods to exist within other-
wise uninterruptible classes. Control over inlining helps im-
prove efficiency for system-level code written in an object-
oriented style (see Section 4.2 and Section 6). Specify-
ing when the program can be interrupted provides support
for exact garbage collection which depends on compiler-
generated maps that identify pointers stored on the stack.

Executing Within Its Own Heap

MMTk faces the problem that its code and state reside
within the heap it is collecting (in Jikes RVM code, threads
and stacks all exist as heap objects due to the Java in Java
implementation). The collector must not scavenge itself!
The copying collectors thus must pre-copy any GC-related
instances and execute with respect to that state in order to
avoid referencing an out-of-date snapshot of the collector’s
state—such a snapshot will lead to catastrophic time-warp.
We address these issues by allocating certain objects in an
immortal (unmoving and uncollected) space and by provid-
ing a generic feature that pre-copies crucial state for any
copying collector, relieving the new algorithms from the
burden of identifying and acting upon the crucial instances.

4.2 Design Patterns Reused in MMTk

MMTk uses design patterns for efficiency and reuse. The
patterns include those identified in prior work (TriColor,
RootSet, Adapter, Facade, Iterator and Proxy) [37], and
four additional patterns: 1) exploiting the behavior of the
most heavily executed code for efficiency; 2) minimizing
contention and synchronization for efficiency; 3) exploiting
collection phases to simplify correct collector construction;
and 4) delegating collector actions to specific policies.

Hot and Cold Paths

Wherever appropriate, MMTk applies a pattern that uses
efficient, lightweight, unsynchronized mechanisms for fre-
quently executed code (the hot path), and periodically uses
more heavyweight mechanisms (the cold path) by mark-
ing the hot path with PragmaInline and the cold path with
PragmaNoInline. MMTk uses this pattern extensively to re-
duce synchronization frequency, and to allow more complex
heuristics.

For example, a copying nursery performs most alloca-
tion with an unsynchronized bump pointer, but periodically
(every 128KB), the allocator takes the slow path. The
slow path synchronously acquires another 128KB chunk
of memory since multiple threads contend for a pool of
such chunks, and polls the collection subsystem, giving it
the opportunity to invoke a collection if necessary. MMTk
reuses this pattern on write barriers and internal dynamic
data structures such as queues and buffers.

Local and Global Scopes

The correctness and performance of a multi-threaded mem-
ory manager depends on a scalable division of the local and
global context (i.e., exposure to synchronization or not). In
MMTk, scope is overt through the use of classes. For ex-
ample, MMTk associates an instance with each thread and
uses the class to reflect global state. Threads are truly con-
current. Jikes RVM maps program, memory management,
and VM threads to kernel threads which reflect the number
of physical CPUs. Instance methods operate over their data
without synchronization, and access shared state through
synchronized global class methods. This model assumes
a single global state. More generally, N global instances
may exist, over each of which P threads operate concur-
rently. In this case, MMTk provides ‘local’ and ‘global’
variants of a class, with N instances of the global class
and N ×P instances of the local class, each mapped to one
global instance. MMTk synchronizes only accesses to the
global state. MMTk uses this pattern to build load balancing
shared data structures (such as work queues and sequential
store buffers), to build multi-threading mechanisms, and to
operate over free lists, bump pointers, mark-sweep collec-
tion, reference counting, and other functions.

Prepare and Release Phases

MMTk uses a simple high level algorithm to imple-
ment all of the stop-the-world (i.e., non-concurrent) col-
lectors. The algorithm has three phases: prepare, pro-
cess all work, and release. MMTk splits the phases into
global and local steps and performs them in the following
order: prepareGlobal, prepareLocal, processAllWork,
releaseLocal, and releaseGlobal. The processAllWork

method is common to all collectors, and consists of transi-
tively processing a collection work queue which is primed

4



in the prepare phase. Each new collector need only imple-
ments a prepare and release phases. For instance, a simple
copying collector establishes all roots of collection in the
prepare phase, and reclaims the space in the release phase.
The local/global divisions ensure correct and efficient syn-
chronization between phases.

Multiplexed Delegation

MMTk builds collectors through the composition of poli-
cies and mechanisms. Plans (discussed in more detail in
Section 4.4 below) perform this composition. For example,
when the memory manager allocates or traces an object, it
invokes the corresponding method in the plan, which then
delegates responsibility to the appropriate policy depend-
ing on the object. We call this pattern multiplexing dele-
gation. The pattern is reused in each plan for a number of
different tasks, such as object allocation, object tracing, and
testing object liveness. Figure 1 shows the traceObject()

method of the Generational class, which delegates tracing
to a range of policies depending on the space in which the
object resides. When we analyze the cyclomatic complex-
ity [28] of the plans (Section 4.5), we find that this pattern
captures over 50% of the plans’ complexity.

1 public static VM_Address traceObject(VM_Address obj) {
2 if (obj.isZero()) return obj;
3 VM_Address addr = VM_Interface.refToAddress(obj);
4 byte space = VMResource.getSpace(addr);
5 if (space == NURSERY_SPACE)
6 return CopySpace.traceObject(obj);
7 if (!fullHeapGC)
8 return obj;
9 switch (space) {

10 case LOS_SPACE:
11 return losSpace.traceObject(obj);
12 case IMMORTAL_SPACE:
13 return ImmortalSpace.traceObject(obj);
14 case BOOT_SPACE:
15 return ImmortalSpace.traceObject(obj);
16 case META_SPACE:
17 return obj;
18 default:
19 return Plan.traceMatureObject(space, obj, addr);
20 }
21 }

Figure 1. The Multiplexed Delegation Pattern:
The traceObject Method for Generational Col-
lectors.

4.3 The Virtual Machine Interface

Since one of MMTk’s goals is to be portable, the inter-
face between it and the rest of the virtual machine must be
as clear and thin as possible without compromising on de-
sign flexibility. The interface is bidirectional across the VM
(virtual machine) and MM (memory manager) and each
side contains requirements and features. The VM_Interface
class implements the requirements of the MM in terms of
the VM’s feature set, while MM_Interface implements the
requirements of the VM in terms of the MM’s feature set.

The key requirements of the MM include identifying the
sources of pointers and providing access to per-object GC
state. In addition, the MM requires housekeeping function-
ality such as low-level memory operations (mmap, bzero,
memcpy, etc.), hardware timers, atomic memory operations,
error handling, I/O, and option processing. VM_Interface

implements these requirements in terms of the VM’s fea-
ture set. Garbage collection typically begins at the root
set (global variables and local variables on the threads’
stacks and registers). The VM enumerates these roots ob-
jects into MMTk’s queue data structures. MMTk enumer-
ates all pointers in these objects and performs a transitive
closure over them. Some collectors maintain state on a
per-object basis (in the object header, for example). The
VM_Interface provides this abstractly, giving portability
across VMs, languages, and object models.

On the other side, the VM requires that the MM provide
allocation; finalization; soft, weak and phantom references;
write barrier implementations; and basic statistics such as
heap size and GC count. MMTk provides these with the
MM_Interface class.

4.4 Composition: Mechanisms, Policies, and Plans

At the heart of MMTk are the software engineering bene-
fits of composition. These benefits include reuse, quick de-
velopment of new collectors, robustness, fair comparisons
of algorithms by holding the underlying mechanisms con-
stant, and the opportunity for performance tuning. Section 6
shows that MMTk obtains these benefits together with ex-
cellent performance. We now outline the key compositional
elements in MMTk: mechanisms, policies, and plans.

Mechanisms

MMTk implements a rich set of collector-neutral, highly-
tuned mechanisms that it shares among collectors, includ-
ing bump pointer allocation; free list allocation; large ob-
ject allocation; finalization; soft, weak, and phantom ref-
erences; parallel load balancing data structures; template-
driven command line parsing; trial-deletion cyclic garbage
collection; a generic, abstract free list; and thread-safe and
GC-safe I/O routines—55 classes in all.

Policies

MMTk currently implements five policies: immortal alloca-
tion, copying collection, mark-sweep collection, reference
counting collection, and treadmill collection. These policies
are each expressed succinctly in terms of the above mech-
anisms. MMTk maps policies to spaces, which are con-
tiguous regions of virtual memory managed by a single pol-
icy. The same policy can manage multiple spaces within an
address space. For example, in the GenCopy collector the
copying collection policy manages multiple spaces that cor-
respond to generations. Each policy follows the local/global
pattern (Section 4.2), implemented in terms of a Space and

5



Local pair for each policy (for example MarkSweepSpace

and MarkSweepLocal). Each instance of a policy space
maps to a single virtual memory space, and has associated
with it P instances of the ‘local’ class, where the collector is
P-way parallel. Thus the key spatial and temporal elements
of memory management policy are overtly captured in the
design.

Plans

Most new memory management algorithms are composi-
tions of a small set of well understood policies (Section 2).
For example, Ulterior Reference Counting [15] composes
reference counting with copying collection. A Plan is
MMTk’s highest level of composition, defining the rules by
which policies are composed. Key among these are:

• the set of policies used by the plan,

• the allocation policy for each object, and

• the collection policy for each object (Figure 1).

Each of a plan’s policies is manifest as a space declared
within the plan, which binds each space to a region of vir-
tual memory. Virtual and physical memory resources are as-
sociated with spaces and the multiplex pattern (Section 4.2)
ensures that allocation and tracing use the appropriate pol-
icy depending on the space.

MMTk implements a growing number of plans that in-
clude SemiSpace, MarkSweep, RefCount, CopyMS, Gen-
Copy, GenMS, NoGC, and GenRC which implements the
recently published Ulterior Reference Counting [15] col-
lector. Researchers are currently adding two more recently
published collectors: Beltway [13] and Mark-Copy [30].

m NCSS NCSS/m BC BC/m ΣCCN LCOM

Watson 2.0.0
SemiSpace 50 1234 24.7 2223 44.5 325 0.97

MarkSweep 78 2288 29.3 3955 50.7 658 0.98
GenCopy 56 1597 28.5 2696 48.1 422 0.97

GenMS 90 2311 25.7 4719 52.4 633 0.98
Total 274 7430 27.1 13593 49.6 2039

Watson 2.2.0
SemiSpace 40 426 10.7 850 21.2 139 0.90

MarkSweep 31 346 11.2 574 18.5 105 0.93
GenCopy 42 659 15.7 1312 31.2 220 0.93

GenMS 40 531 13.3 1294 32.4 171 0.88
Total 153 1962 12.8 4030 26.3 635

MMTk
SemiSpace 30 237 7.9 463 15.4 98 0.93

MarkSweep 29 240 8.3 421 14.5 89 0.93
GenCopy 19 117 6.2 198 10.4 49 0.89

GenMS 18 104 5.8 158 8.8 43 0.86
Generational 36 279 7.8 434 12.1 102 0.96

Total 132 977 7.4 1674 12.7 383

Table 1. Methods (m), Non-comment Source
Statements (NCSS), Bytecodes (BC), Total
Cyclomatic Complexity (ΣCCN), and Lack
of Cohesion Of Methods (LCOM) for Four
Garbage Collectors in Three Systems

Figure 2 illustrates the composition mechanism dis-
cussed in this section with a UML class diagram with mul-
tiplicity and association information. The bold box is the
per-thread instance through which most memory-related re-
quests are serviced. The central spine shows the inheritance
relationship of the plans while the clusters of instances to
the side represent different memory regions. For exam-
ple, the cluster emanating from the BasePlan corresponds to
the immortal memory region that holds objects with an im-
mortal lifetime while the MarkSweep cluster coming from
the GenerationalMS plan is the distinguishing feature of the
GenMS collector. In each cluster, we see both the hot-cold
pattern illustrated by the annotated paths and local-global
pattern shown by the multiplicity annotation. The overall
4-way multiplexing or composition is handled by the plan
hierarchy.

4.5 Exploiting Java’s Features in MMTk

This section evaluates how well MMTk attains its software
engineering goals with reuse and inheritance. Table 1 com-
pares the implementation of a classic copying generational
collector (GenCopy) and a hybrid copying, mark-sweep
generational collector (GenMS) in MMTk written in Java
with an object-oriented style and two releases of the Watson
collectors written in Java with a monolithic style. Watson
2.0.0 was the first public release of the Watson collectors in
Jikes RVM, and Watson 2.2.0 reflected a major clean up and
refactoring and was the last public release.

Table 1 reports the number of methods, lines of code,
and number of bytecodes, total cyclomatic complexity [28],
and LCOM (Lack of Cohesion of Methods) [22] for each
of the three systems. MMTk uses a common superclass
Generational to implement most of the functionality of the
two generational collectors. Command line parameters se-
lect among multiple nursery sizing polices (fixed, bounded,
flexible) in these collectors. The Watson collectors imple-
ment only the fixed nursery policy (the Watson 2.0.0 code
base included a distinct collector with 1850 lines of code
which implemented a variable nursery generational collec-
tor). In addition, there is an enormous reduction in overall
complexity, the object-oriented style in MMTk attains an
average method cyclomatic complexity [28] substantially
lower than in the Watson implementations. Cyclomatic
complexity measures the complexity of the branching and
looping. This approach reflects our faith in the capacity of
Jikes RVM’s aggressive optimizing compiler [1] to produce
high quality code from strongly objected-oriented source.

5 Methodology
This section briefly describes Jikes RVM, our experimental
platform, and key characteristics of our benchmarks.

We use MMTk in Jikes RVM version 2.3.0.1 (formerly
known as Jalapeño). Jikes RVM is a high-performance VM
written in Java with an aggressive optimizing compiler [1].

6



Generational

GenerationalMS

BasePlan

StopTheWorld

*

*

FreelistVirtualMemory

MemoryResource

TreadmillSpace

TreadmillLocal

1

1

1

{hot path}

{c
ol

d 
pa

th
}

{GC}

{R
es

ou
rc

e 
ex

ha
us

te
d?

} {Virtual R
ange

Allocation}

MonotoneVirtualMemory

MemoryResource

MarkSweepSpace

MarkSweepLocal{hot path}

{GC}

{V
irt

ua
l R

an
ge

Al
lo

ca
tio

n}

{c
ol

d 
pa

th
}

{R
es

ou
rc

e 
ex

ha
us

te
d?

}

*

1

1

1

ImmortalVirtualMemory

MemoryResource

BumpPointer
{hot path}

{V
irt

ua
l R

an
ge

Allo
ca

tio
n}

{c
ol

d 
pa

th
}

{R
es

ou
rc

e 
ex

ha
us

te
d?

}

*

1

1

MonotoneVirtualMemory

MemoryResource

BumpPointer

{hot path}

{Virtual Range

Allocation}

{c
ol

d 
pa

th
}

{R
es

ou
rc

e 
ex

ha
us

te
d?

}

*

1

1

Figure 2. Composition of GenMS.

We use configurations that precompile as much as possi-
ble, including key libraries and the optimizing compiler (the
Fast build-time configuration), and turn off assertion check-
ing. For our micro-benchmarks, we use the highest level of
optimization and run the benchmark multiple times to ex-
clude compiler activity. For all other experiments, we use
the adaptive compiler which samples to select hot methods
that it then optimizes [3]. Adaptive compilation introduces
variations in the load on the garbage collector and program
behavior due to its statistical choices. Different collectors
compound this variation since the adaptive compilation of
different write-barriers is part of the runtime system as well
as the program [14].

We perform experiments on a 2.0 GHz Intel P4 Xeon,
with a 64 byte L1 and L2 cache line size, 8KB 4-way set
associative L1 data cache, 12K L1 instruction trace cache,
512KB unified 8-way set associative L2 on-chip cache, and
1 GB main memory running Linux 2.4.20. We run each
benchmark at a particular parameter setting five times and
use the fastest of these. The variation between runs is low,
and we believe this number is the least disturbed by other
system factors and the adaptive compiler’s variability.

Table 2 shows benchmarks characteristics using fast
adaptive compilation for eight SPEC JVM benchmarks, and
pseudojbb, a variant of SPEC JBB2000 that executes a
fixed number of transactions to hold constant the garbage
collection load. The alloc column indicates the total number
of megabytes allocated. The second column lists the ratio
of total allocation to the minimum heap size for the GenMS
collector in MMTk to quantify the garbage collection load.
Watson collector users must statically partition the heap into
3 parts: immortal, large, and small objects (see Section 6.2
for additional discussion). For all of our experiments, the
Watson collectors use 1 MB of immortal space. We deter-
mined experimentally the minimum size for the small and

Watson
alloc (MB) alloc:min small:large

202 jess 403 25:1 6:5
213 javac 593 23:1 16:5
228 jack 307 22:1 2:1

205 raytrace 215 12:1 8:5
227 mtrt 224 11:1 11:5

201 compress 138 8:1 1:3
pseudojbb 339 7:1 36:5

209 db 119 6:1 2:1
222 mpegaudio 51 4:1 3:4

Table 2. Benchmark Characteristics

large object spaces and show this ratio in third column. We
configure the Watson collectors to allocate 1MB to immor-
tal space and remaining space to the small and large spaces
according to the ratio in column 3 for each heap size.

6 Results

We first compare MMTk SemiSpace and MarkSweep with
the original highly tuned Jikes RVM Watson collectors on
micro-benchmarks and larger benchmarks. MMTk’s ab-
stractions cost about 5 to 25% compared to the Watson col-
lectors in raw speed of the mechanisms. We also compare
MMTk on Java micro-benchmark with a standard C mal-
loc implementation on the same micro-benchmark written
in C to reveal whether Java is a suitable systems language.
MMTk actually attains better performance due to the Jikes
RVM compiler’s inlining, a Java in Java feature, without
this advantage, C out performs MMTk by 6%. On standard
benchmarks, MMTk attains significantly better total perfor-
mance than the Watson collectors largely because all its col-
lectors reuse a dynamic heap partitioning algorithm instead
of the Watson collectors’ static partitioning.

More broadly, MMTk’s performance advantage is a di-
rect result of good component design that it reuses among
collectors, coupled with fast, but not the fastest mecha-

7



Allocation Tracing
Rate (MB/s) Rate (MB/s)

Watson SemiSpace 690 58
MMTk SemiSpace 610 55

Watson MarkSweep 600 93
MMTk MarkSweep 575 69

Table 3. Allocation and Tracing Rates
No Inlining Inlining

MMTk SemiSpace 396 610
MMTk MarkSweep 315 575

C malloc 478 —
C calloc 338 —

Table 4. Allocation Rates for MMTk and C

nisms. Building identical, faster monolithic collector is cer-
tainly possible, but in MMTk high-performance implemen-
tations are more likely.

6.1 Raw Speed Comparisons

We measure throughput (raw speed) of allocation and trac-
ing to reveal the runtime cost of our abstractions. Our
Java micro-benchmark constructs a binary tree whose nodes
have two references fields for the children and two data
fields. We compute the allocation rate by allocating 100 MB
of unconnected binary nodes, and the tracing rate by trac-
ing 100 MB of a balanced binary tree. Table 6.1 compares
Watson and MMTk, SemiSpace and MarkSweep collectors.
The MMTk collectors are slower by 11% and 4% in alloca-
tion speed for SemiSpace and MarkSweep, respectively. On
tracing rates, the slowdown is 4.7% and 25.8% The alloca-
tion difference on SemiSpace comes directly from the reuse
in our abstraction: the SemiSpace allocation code contains
an extra load instruction to retrieve the bump pointer ob-
ject whereas the corresponding fields in the Watson collec-
tors are manually inserted in an unrelated class as an opti-
mization. The most serious discrepancy in the MarkSweep
tracing rate comes from algorithmic differences between
MMTk and Watson discussed below.

We also compare MMTk on the Java micro-benchmark
to the GNU C library’s malloc (ptmalloc version 1.108,
which is based on version 2.7.0 of the Lea allocator in
single threaded mode) on a C version of the same micro-
benchmark. Since this version of malloc uses a function
call, the fairest comparison is with no inlining in MMTk.
On the flip side, since Java returns zeroed memory, calloc
rather malloc should be used. Table 4 shows that inlining
gives a significant advantage (about 35% to 45%) and zero-
ing memory does have a significant cost (29%). The closest
comparison (MMTk MarkSweep - noinline versus C calloc)
shows that C has a slight advantage 6.8%.

6.2 MMTk versus Watson Collectors

Figure 3 compares MMTk and Watson on the benchmarks
from Table 2 using the geometric mean on garbage collec-

1

2

3

4

5

6

7

8

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

4.5

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(a) GC time

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 2 3 4 5 6

8.2

8.4

8.6

8.8

9

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(b) Mutator time

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6
9.5

10

10.5

11

11.5

12

12.5

13

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

Watson SemiSpace
JMTk SemiSpace

Watson MarkSweep
JMTk MarkSweep

(c) Total time

Figure 3. MMTk versus Watson

tion, mutator, and total time. Mutator time includes allo-
cation, adaptive compilation, and application time. These
results vary the heap size from the minimum in which any
collector executes to 6 times the minimum at 16 different
points, and normalize to the best result.

Although the MMTk and Watson collectors are similar
in spirit, there are a few key differences. MMTk stores col-
lector meta-data in the heap, whereas Watson collectors do
not, enjoying a small space advantage. Both families di-
rectly manage objects larger than 8 KB with a large object
space (LOS) and trace the LOS on every collection. Wat-
son’s LOS is a next-fit algorithm with page alignment. It

8



does not maintain a free list. To satisfy a request, it sequen-
tially scans through the LOS memory until it finds sufficient
contiguous free pages. MMTk uses a free list.

The Watson collectors statically divide the heap into ar-
eas for small, large, and immortal objects based on com-
mand line parameters. We experimentally determined the
smallest parameter for the small, large and immortal spaces.
We use the ratio between large and small and a constant im-
mortal setting to give the Watson collectors the best possi-
ble command-line parameters at any heap size. In MMTk,
a command line parameter sets the total heap size and then
MMTk dynamically checks that the sum of the spaces does
not exceed the specified heap size. MMTk thus enjoys a
space advantage during the periods that the program is not
using the maximum in the large or immortal space. This
advantage accounts for much of the differences in garbage
collection times for both SemiSpace and MarkSweep col-
lectors in Figure 3(a). MMTk SemiSpace runs in smaller
heaps than Watson SemiSpace for the same reason. This
result is also reflected but dampened in Figure 3(c) since
collection time is a fraction of total time. Of course, each of
the Watson collectors could implement dynamic heap par-
titioning, but MMTk’s modular design provides feature to
every collector without additional implementation effort.

Although MMTk and Watson SemiSpace are close algo-
rithmically, Figure 3(b) shows a performance advantage in
mutator time for MMTk. The advantage of MMTk SemiS-
pace is strongly correlated with smaller heap sizes, which
suggests collection-induced locality as the cause (collection
occurs more frequently at smaller heap sizes, compacting
the space and improving locality). Watson uses the stan-
dard breadth-first copying order, whereas our other exper-
iments show and these results confirm the superiority of a
depth-first ordering used by MMTk [36].

Algorithmically, the two MarkSweep collector are sim-
ilar, but Watson uses different size classes. It uses powers
of two and some additional ones: 12, 20, 84, and 524. This
results in worst case internal fragmentation of 50%. Since
most objects are small, this worst case is unlikely. However
our size classes obtain a perfect fit on all objects less than
64 bytes and have a worst case fragmentation of 1/8. Be-
cause Watson MarkSweep has a one word header, it enjoys
a runtime advantage of on average 2% for our benchmarks
over the two word header in MMTk. (We plan to implement
this optimization.)

6.3 Variety of Implementation

Figure 4 presents total execution time for one applica-
tion, 202 jess, with some of the collectors currently avail-
able in MMTk, but leaves for other work detailed perfor-
mance analysis and comparisons [12]. The Figure shows
MarkSweep, SemiSpace, classic generational (GenCopy,
GenMS), reference counting (RefCount), and generational

reference counting (GenRC) [15] collectors. The genera-
tional collectors uniformly enjoy a performance advantage
over the full heap collectors.

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6

10

15

20

25

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e 
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

Figure 4. MMTk Collectors on 202 jess

7 Conclusions and Future Work
MMTk is a case study in mixing performance and flexi-
bility in systems research where both are critical. The re-
newed interest in garbage collection highlights the need
for a memory management toolkit where ideas can be
rapidly realized and compared without sacrificing perfor-
mance. Three factors point to MMTk’s flexibility: 1) a
wide range of collector implementations, 2) new collec-
tor implementations [15, 30], and 3) code metrics demon-
strate a simple and modular design. Careful cooperation
with an aggressive optimizing compiler couples this design
with high-performance. On micro-benchmarks MMTk is
5% to 25% slower than a monolithic Java implementation,
but 60% faster than standard non-inlined calloc in C. How-
ever, MMTk consistently improves total performance on
real benchmarks by up to 20% over monolithic implemen-
tations because the clean design results in better memory
management algorithms and mechanisms, and their broad
application. Furthermore, the cleaner design yields a sub-
stantially more robust system that is easier to maintain and
has fewer defects. This success refutes common wisdom
about performance critical software in Java and suggests
this approach can be more widely embraced.

Ongoing work on MMTk should fully evaluate its porta-
bility. In addition, preliminary evidence shows that the scal-
ability of parallel collection in MMTk is sometimes notice-
ably worse than for the Watson collectors. Finally, MMTk
is relatively immature and further tuning, including the ad-
dition of other object models, is needed.

References
[1] B. Alpern et al. The Jalapeño virtual machine. IBM Systems Journal,

39(1):211–238, February 2000.

[2] A. W. Appel. Simple generational garbage collection and fast allo-
cation. Software Practice and Experience, 19(2):171–183, 1989.

9



[3] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adap-
tive optimization in the Jalapeño JVM. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 47–65, Minneapolis, MN, October 2000.

[4] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A compar-
ative evaluation of parallel garbage collectors. In Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001.

[5] G. Attardi and T. Flagella. A customizable memory management
framework. In Proceedings of the USENIX C++ Conference, Cam-
bridge, Massachussetts, 1994.

[6] G. Attardi, T. Flagella, and P. Iglio. A customizable memory man-
agement framework for C++. Software Practice & Experience,
28(11):1143–1183, 1998.

[7] H. Azatchi and E. Petrank. Integrating generations with advanced
reference counting garbage collectors. In International Conference
on Compiler Construction, Warsaw, Poland, Apr. 2003.

[8] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith.
Java without the coffee breaks: A nonintrusive multiprocessor
garbage collector. In ACM SIGPLAN Conference on Programming
Languages Design and Implementation, pages 92–103, Snowbird,
UT, June 2001.

[9] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In ACM Symposium
on the Principles of Programming Languages, pages 285–294, New
Orleans, LA, Jan. 2003.

[10] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in reference
counted systems. In J. L. Knudsen, editor, Proc. of the 15th ECOOP,
volume 2072 of Lecture Notes in Computer Science, pages 207–235.
Springer-Verlag, 2001.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-
performance memory allocators. In ACM SIGPLAN Conference on
Programming Languages Design and Implementation, pages 114–
124, Salt Lake City, UT, June 2001.

[12] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In SIGMETRICS,
NY, NY, June 2004.

[13] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: Getting around garbage collection gridlock. In Proc. of
SIGPLAN 2002 Conference on PLDI, pages 153–164, Berlin, Ger-
many, June 2002.

[14] S. M. Blackburn and K. S. McKinley. In or out? Putting write bar-
riers in their place. In ACM International Symposium on Memory
Management, pages 175–183, Berlin, Germany, June 2002.

[15] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. In ACM Conference
on Object-Oriented Programming Systems, Languages, and Appli-
cations, pages 244–358, Anaheim, CA, Oct. 2003.

[16] G. Bracha and W. Cook. Mixin-based inheritance. In ACM Proceed-
ings of the European conference on object-oriented programming on
Object-oriented programming systems, languages, and applications,
pages 303–311, Ottawa, Canada, 1990.

[17] P. Cheng and G. Blelloch. A parallel, real-time garbage collector.
In ACM SIGPLAN Conference on Programming Languages Design
and Implementation, pages 125–136, Snowbird, UT, June 2001.

[18] J. Dean, G. DeFouw, D. Grove, V. Litinov, and C. Chambers. Vor-
tex: An optimizing compiler for object-oriented languages. In ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 83–100, San Jose, CA, Oct. 1996.

[19] L. P. Deutsch and D. G. Bobrow. An efficient incremental auto-
matic garbage collector. Communications of the ACM, 19(9):522–
526, September 1976.

[20] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Commu-
nications of the ACM, 21(11):966–975, September 1978.

[21] R. Fitzgerald and D. Tarditi. The case for profile-directed selection
of garbage collectors. In ACM International Symposium on Memory
Management, pages 111–120, Minneapolis, MN, Oct. 2000.

[22] B. Henderson-Sellers. Object-oriented metrics — measures of com-
plexity. Prentice-Hall, New Jersey, 1996.

[23] R. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A language-
independent garbage collector toolkit. Technical Report TR-91-47,
Dept. of Computer Science, University of Massachusetts, Amherst,
Sept. 1991.

[24] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to
the future: the story of Squeak, a practical Smalltalk written in itself.
In ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 318–326, Atlanta, GA, Oct. 1997.

[25] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, July 1996.

[26] Y. Levanoni and E. Petrank. An on-the-fly reference counting
garbage collector for Java. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 367–
380, Tampa, FL, Oct. 2001.

[27] H. Lieberman and C. E. Hewitt. A real time garbage collector based
on the lifetimes of objects. Communications of the ACM, 26(6):419–
429, 1983.

[28] T. J. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, 2(4):308–320, Dec. 1976.

[29] K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi, and J. Vitek.
Engineering a customizable intermediate representation. In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Em-
ulators, San Diego, CA, June 2003.

[30] N. Sachindran and J. E. B. Moss. Mark-Copy: Fast copying GC with
less space overhead. In ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 326–343,
Anahiem, CA, Oct. 2003.

[31] D. Stefanović, M. Hertz, S. M. Blackburn, K. McKinley, and J. Moss.
Older-first garbage collection in practice: Evaluation in a Java vir-
tual machine. In Memory System Performance, pages 175–184, June
2002.

[32] D. Stefanović, K. McKinley, and J. Moss. Age-based garbage col-
lection. In ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 370–381, Denver, CO,
Nov. 1999.

[33] D. Stutz, T. Neward, and G. Shilling. Shared Source CLI Essentials.
O’Reilly, 2003.

[34] D. M. Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Develop-
ment Environments, pages 157–167, April 1984.

[35] K.-P. Vo. Vmalloc: A general and efficient memory allocator. Soft-
ware Practice & Experience, 26(3):1–18, 1996.

[36] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective static-graph
reorganization to improve locality in garbage-collected systems. In
ACM SIGPLAN Conference on Programming Languages Design and
Implementation, pages 177–191, Toronto, Canada, June 1991.

[37] S. A. Yeates and M. de Champlain. Design of a garbage collector
using design patterns. In C. Mingins, R. Duke, and B. Meyer, edi-
tors, Proceedings of the Twenty-Fifth Conference of (TOOLS) Pacific,
pages 77–92, Melbourne, 1997.

10


